International Union of Crystallography Commission on Crystallographic Apparatus Single Crystal Intensity Measurement Project Report I. Inter-Experimental Agreement*

By S. C. Abrahams

Bell Telephone Laboratories, Inc., Murray Hill, New Jersey 07974, U.S.A.

WALTER C. HAMILTON Brookhaven National Laboratory, Upton, New York 11973, U.S.A.

AND A. MCL. MATHIESON

Division of Chemical Physics, C.S.I.R.O., Clayton, Victoria 3168, Australia

(Received 23 June 1969)

Seventeen sets of measurements of structure factors of D(+)-tartaric acid, within the range $(\sin \theta)/\lambda < 0.5 \text{ Å}^{-1}$, were provided by the participants in the International Union of Crystallography Single Crystal Intensity Measurement Project. Each participant used a different crystal, all being derived from a single crystallization batch. The results in the Project are representative of those from a wide variety of currently used diffractometers and techniques. The instruments included four-circle, normal-beam and equi-inclination diffractometers. Cu and Mo radiations were used – unfiltered, with single and balanced filters, and with crystal monochromators.

The aims of the project were twofold: (a) to provide an estimate of the spread of F values associated with the range of variables involved in the project and (b) to locate, if possible, the sources of error. A number of agreement indices were used to measure the spread of F values both for equivalent reflections within any one experiment and for comparisons between experiments. In an attempt to allocate errors to certain plausible sources, an analysis-of-variance was applied to the weighted deviations of individual values of F from the set of mean values. The variables specified were intensity I, a θ angle factor d^* and the Miller indices h, k, l. From the values of the agreement indices and the interaction curves from the analysis-of-variance, it was possible to recognize outlier sets that differ considerably from the mean and to isolate these, where necessary, before arriving at an estimate of the error spread of the main group.

In this project, there is no one simple figure of merit which provides a ready assessment of the accuracy of measurement of structure factors. Rather, there are several ways of indicating the probable accuracy. One way is to present the spread of values of

$R_{ij} = \sum (|F_i| - |F_j|) \sum \frac{1}{2} (|F_i| + |F_j|).$

This shows that two scaled *experimental* sets of structure factors, measured under circumstances similar to those of the project, will most probably differ by 6%, agree no better than 3%, and usually no worse than 10% except in cases of extreme systematic error where it may rise to 50% or more. From the analysis-of-variance, inferences are drawn concerning the concordance of results derived from the different types of diffractometer, on features of technique associated with the diffractometers and on other aspects, including λ dependence, monochromaticity, count rates and extinction in the crystals. It is concluded that other sources of error may be present and that future projects should be designed to reveal these.

Introduction

In 1959 the Commission on Crystallographic Apparatus of the International Union of Crystallography held an Inter-Congress Meeting in Stockholm, one section of which dealt with Counter Methods for Crystal Structure Analysis (I.U.Cr., 1959). Subsequently, during the 6th Congress of the Union in Rome in 1963, two Open Sessions of the Commission were devoted to 'Automatic Single-Crystal Diffractometers for X-rays and Neutrons' (I.U.Cr., 1964a). Since the main features regarding the design and technical aspects of the various types of instruments appeared to have been adequately covered by these meetings, the Commission's interest was transferred to a study of the measurement of integrated X-ray intensities of single crystals.

The method chosen to investigate this complex problem involved seeking the cooperation of crystallographers, on an international basis, in a series of measurements on the same material. A project of this type would then provide crystallographers with a measure of the possible accuracy as opposed to the individual precision of a set of measurements of structure factors,

^{*} A preliminary report on the I.U.Cr. Project was made by S.C.A. and W.C.H. in an open session of the Commission on Crystallographic Apparatus at the 7th Congress of the I.U.Cr. at Moscow, July 1966.

F. The Commission therefore extended an invitation to all interested crystallographers to participate in a Single Crystal Intensity Project (I.U.Cr., 1964b). The accuracy of the integrated intensities and resultant structure factors measured by current diffractometer methods, with data to be collected by the participant's normal routine procedure, could thereby be assessed. It was also hoped that analysis of the data supplied would indicate the major sources of error so that structure factor measurement of improved accuracy might be attained in the future.

2

For the I.U.Cr. project, a low-symmetry, low-absorption organic material was considered most suitable because the American Crystallographic Association (1962) had initiated a Single Crystal Intensity Project with similar aims, using a high-symmetry inorganic compound, CaF_2 , as test specimen.* With two such projects in operation, it was clearly desirable to avoid un-

* The results of the A.C.A project have been published (Abrahams, Alexander, Furnas, Hamilton, Ladell, Okaya, Young & Zalkin, 1967) and discussed (Mackenzie & Maslen, 1968; Abrahams, Alexander, Furnas, Hamilton, Ladell, Okaya, Young & Zalkin, 1969). necessary overlap. The A.C.A project, by its national character, could involve measurement on the same standard sphere of CaF_2 , but in the I.U.Cr. project, with prospective participants from many countries, measurements were necessarily made on a different crystal in each laboratory. By this procedure, exploration of a region of variation additional to that considered in the A.C.A project was possible (Mathieson, 1969). The material chosen for the I.U.Cr. project was D(+)-tartaric acid. All crystals were from a single crystallization batch, grown by A. McL. Mathieson. Each participant was supplied, by air mail, with approximately 12 well-developed small crystals.

The lattice constants were remeasured for the I.U.Cr. project by Cooper (1966), using Bond's (1960) method. $a=7.7290\pm1$, $b=6.0004\pm1$, $c=6.2126\pm1$ Å and $\beta=100.153^{\circ}\pm2$ at 25°C.† The space group of tartaric acid is $P2_1(C_2^2)$.

Each participant was asked to measure the integrated intensity of every hk0 reflection, including all

† Standard deviations are given in units of the least significant digit.

Tał	ble	1.	Partici	pants	in	the	I.U	Cr.	Project

Crystallographer	Laboratory
Abrahams, S. C. & Bernstein, J. L.	Bell Telephone Laboratories, Inc.,
Ferguson, G.	Chemistry Department, The University,
	Glasgow, Scotland.
	(Present address: University of Guelph, Ontario, Canada.)
Gabe, E.	Institute for Cancer Research,
	Pox Chase, Philadelphia, Pelinsylvania, U.S.A. (Present address: Mines Branch Dent, of Mines
	and Technical Surveys, 555 Booth Street, Ottawa, Canada)
Gomes de Mesquita, A. H.	Philips Research Laboratories.
	Eindhoven, The Netherlands.
Kheiker, D. M., Nekrasov, Ju. V. &	Institute of Crystallography,
Mimrin, V. A.	Academy of Science of USSR, Moscow, USSR.
Lenhert, P. G.	Dept. of Physics and Astronomy,
	Vanderbilt University, Nashville, Tennessee, U.S.A.
McGandy, E. L. & Sevčík, J.	Dept. of Biological Sciences,
	(Present address) Dent, of Piochemistry
	and Nutrition University of Pittsburgh
	Pittsburgh Pennsylvania USA)
Okava, Y.	International Business Machines Corp.
· ····	Yorktown Heights, New York, U.S.A.
	(Present address: Dept. of Chemistry,
	State University of New York,
	Stony Brook, New York, U.S.A.)
Palmer, K. J.	U.S. Dept. of Agriculture,
D. 1.1.1. M. Deven J. C.	Albany, California, U.S.A.
Przydylska, M., Bevan, J. &	Ottowa 2 Canada
Shibata A Vochimatsu M Hori T	Bigaku-Denki Co. I td
Sata M & Araki H	Akishima-Shi Tokyo Janan
Smolin, G. Y.	Institute of Silicate Chemistry.
,	Academy of Sciences of USSR, Leningrad, USSR.
Suvorov, E. V. & Kozlovsky, V. F.	Physics Department,
	Moscow State University, Moscow, USSR.
Townes, W. D.	U.S. Army Electronic Command,
	Fort Monmouth, New Jersey, U.S.A.
wallwork, S. C.	Dept. of Unemistry, University of Nottingham England
	Georgia Institute of Technology
I Uulig, IX. A.	Atlanta, Georgia, U.S.A.

equivalent reflections, within the range $(\sin \theta)/\lambda \le 0.5 \text{ Å}^{-1}$; also, all reflections with positive k and l within the same $(\sin \theta)/\lambda$ range. Any X-radiation could be used. A comprehensive questionnaire was sent to each participant, replies to which gave the relevant details for each experiment (see following section).

Approximately 60 laboratories in 10 countries expressed interest in the Commission's invitation to take part in the I.U.Cr. project. Of these, 44 agreed to participate, with a total of 16 ultimately providing measurements and completed questionnaires for analysis. The participants are listed alphabetically, with their location at the time, in Table 1. One participant submitted a second set of data (experiment 11b in Table 2) before analysis was completed. He suggested that his first set (experiment 11a) might be in error due to the crystal not being completely bathed in the incident X-ray beam. The results from one active participant who used neutrons as his radiation have been omitted from analysis in this part of the Report.

With a multi-parameter structure, such as that of D(+)-tartaric acid, there is an obvious interest in comparing the various sets of experimental data with theoretical structure factors. The calculated values are however dependent on the particular model selected, not only for the molecular conformation but also for the individual atomic scattering factors. This refinement and comparison of each set against a currently acceptable theoretical model forms part II (Hamilton & Abrahams, 1969) of the Report.

A comparison against theoretical values does not necessarily provide an estimate of experimental accuracy of the measurement sets. For this purpose, the experimental data sets may be compared solely in terms of their internal and mutual consistency. This approach constitutes part I of this Report.

Experimental procedures

The questionnaires sent to the participants contained 22 major questions, of which some were sub-divided into as many as six parts. A summary of some of the more important items of information, which varied in completeness, is collected in Table 2, where each experiment has been given an identification number; further information is available on request.

The stability values given in the second and third columns are defined as $100(I_{max}-I_{min})/I_{mean}$ where the *I* values are the integrated intensities of a standard reflection measured repeatedly throughout the time interval stated. These values do not necessarily indicate a corresponding uncertainty in the final integrated intensities since some experimenters used the standard reflection values to compensate measured intensities for this variation.* The fourth column indicates the radia-

tion used and the method of filtering or monochromatization. The fifth column gives the maximum count rate, while the method used to ensure an apparent linear response from the counting system is indicated in the sixth column.

The basic type of diffractometer is described under 'Geometry' in the seventh column, where '4-circle' refers to an instrument in which the angles φ , χ , ω and θ (see Furnas, 1957; Arndt & Willis, 1966 for terminology) may be varied, with all intensity measurements being made in the equatorial plane. 'Equi-inclination' indicates variation only of ω and v (Buerger, 1960) within a given reciprocal lattice layer; in 'normal beam' instruments, the ω axis remains normal to the incident X-ray beam for all layers measured.

The shape of the crystal used, together with its dimensions, is given in the eighth column. Some crystals, described as 'natural', were used exactly as supplied. Others were shaped either by grinding or by cutting. The ratio of the maximum to minimum absorption correction is given in column nine for the cases where this correction was made (in four experiments); the error in individual reflections due to absorption is as much as ± 10 per cent in some of the remaining experiments. It should be emphasized here that each participant was asked to measure and report the integrated intensities and structure factors of D(+)-tartaric acid by his normal, routine method. In some participating laboratories, normal procedures involved use of spherical or cylindrical crystals; the difficulty in grinding D(+)-tartaric acid without damage to the crystal, together with lack of facilities to make absorption corrections for the natural-shaped crystal, resulted in these participants deviating from their 'normal' method. Assessment of the mosaic spread was requested. The method suggested was measurement, with a fine receiving slit, of the crystal rotation angle (ω) from 5% of the maximum intensity on one side of the peak to 5% on the other side of the peak for a reflection in the region of $2\theta \simeq 30^\circ$. The values, in the tenth column, indicate some variation in the apparent mosaic spread of the crystal.*

The method used to determine the 'background' for each reflection is indicated in column eleven. B_1 and B_2 are the extreme positions of the scan made across the reciprocal lattice point in experiments 1, 5, 6, 7, 8, 10, 11*a*, 11*b*, 12 and 16. The 'background' count is sampled at a single angular setting in experiments 2, 3, 9 and 13. In experiment 15, the background was sampled at every 2.5° interval in ω on each layer. The procedures used in experiments 4 and 14 are given explicitly in Table 2. The angles varied in each intensity measurement are indicated in column twelve, while the expression used to derive the integrated intensity is given in the final column. C_T is the total number of counts

^{*} No evidence was presented to indicate a monotonic decrease or increase in intensity with time which might be consistent with a simple process of radiation damage to the crystals.

^{*} The measurement gives the convolution of the mosaic spread of the crystal with the resolution function of the instrument (*e.g.* Cooper & Nathans, 1968).

Table 2. Experimental variables in the

Experi- ment	Short term stability*	Long term stability*	Radiation monochro- maticity	Maximum counts per second	Method used to attain linearity	Geometry	Crystal shape (mm)
1	1.5% (4 hours)	14·4% (17 days)	Mo K No filter	20,000	None	4-circle	Natural 0·81 × 0·21 × 0·20
2	2·6% (15 mins)	3·1% (14 days)	Cu K Ni filter	9,200	Ni attenuator	4-circle	Ellipsoid $0.25 \times 0.23 \times 0.21$
3	0.6% (2 mins)	-	Cu K Ni filter	20,000	Tube current reduced	4-circle	$Cut 0.30 \times 0.21 \times 0.19$
4	4·4% (30 mins)	4·4% (11 hours)	Cu K Ni filter	2,000	Attenuators	4-circle	Ellipsoid 0·72 × 0·61 × 0·56
5	1.6% (3 hours)	4·4% (5 days)	Mo K Balanced Zr, Y filters	6,000	Brass-foil attenuators	4-circle	Natural 0·31 × 0·27 × 0·19
6	1·4% (50 mins)	6·7% (6 days)	Mo K Balanced Zr, Y ₂ O ₃ filters	2,500	Al attenuators	4-circle zero layer	Natural 0·69 × 0·61 × 0·28
7	1.6% (1 hour)	12·0% (7 days)	Mo K Balanced Zr, Y filters	11,000	Attenuators	4-circle	$\begin{array}{c} Cut\\ 0.22\times0.22\times0.22\end{array}$
8	3.1%	6.8%	Cu K Balanced Co ₂ O ₃ , Ni filters	10,000	Ni attenuator	4-circle	Sphere $R = 0.117$
9	1·2% (1 hour)	3.8% (6 days)	Cu K (l=0,1,2) Mo K (l=3,4,5) Balanced Ni, Co; Zr, Sr filters	6,000	Ni attenuator	Normal beam	Natural 0·50 × 0·25 × 0·25
10	1·2% (45 mins)	3·2% (2 days)	Cu K Ni filter	6,000	Tube current reduced	Normal beam zero layer	Ellipsoid 0·18 diameter
11 <i>a</i>	1·4% (9 mins)	13·8% (8 days)	Mo K Zr filter	100,000	None	Equi- inclina- tion	Natural 1·20 × 0·90 × 0·25
11 <i>b</i>	2·8% (9 mins)	3·1% (8 days)	Mo K Zr filter	100,000	None	Equi- inclina- tion	Natural 0·70 × 0·54 × 0·08
12	-	4·1% (2·5 days)	Mo K Zr filter	100,000	Tube current reduced	Equi- inclina- tion	$\begin{array}{c} Cut\\ 0.50\times0.25\times0.25\end{array}$
13	1.8% (1 day)	8·4% (26 days)	Mo K Balanced SrSO4, Zr(NO3)4 filters	10,000	Tube current reduced	Equi- inclina- tion	$Cut \\ 0.50 \times 0.26 \times 0.25$
14	1·6% (90 mins)	2·2% (14 days)	Mo K Balanced Zr, Y filters	52,000	Tabular inter- polation correction	Equi- inclina- tion	Natural 0·41 × 0·38 × 0·22
15	-	0.7%	Mo <i>K</i> NaCl (200)	1,500	None	Equi- inclina- tion	Sphere $R = 0.10$
16	0·9% (2 hours)	5·2% (22 days)	Mo <i>K</i> LiF (200)	40,000	None	Equi- inclina- tion	Ellipsoid $0.23 \times 0.20 \times 0.15$

* [100(I_{max} - I_{min})]/[I_{mean}].
† Absorption correction not applied but estimated as 1.19 for Cu.
‡ Scan range extreme.

•

participating diffractometer techniques

Max/min				
absorption	Mosaic	Background	Sampling	Integrated intensity
correction	spread	S D E t at	Continuous	$C = \langle C - C - \rangle$
Not made	0.82	B_1 and B_2	$\omega, 2\theta$	$C_T = i(C_{B_1} + C_{B_2})$
Not made	0.23	S.R.E. [‡] at B on high 2θ side of peak	Continuous ω ,2 θ	$C_T - tC_B$
Not made	0.21	B at high 2θ side of peak	Fixed crystal, fixed counter	$C_T - tC_B$
1.13	Not reported	First and last 3C ₁	Stepped ω , 2θ	$\sum_{1}^{24} C_j - 4(\sum_{1}^{3} C_j + \sum_{22}^{24} C_j)$
Not made	0.22	S.R.E. [‡] at B_1 and B_2	Continuous ω , 2θ	$(C_{T\beta} - C_{T\alpha}) - t[(C_{B_1} + C_{B_2})_{\beta} - (C_{B_1} + C_{B_2})_{\alpha}]$
Not made	0.21	S.R.E. [‡] at B_1 and B_2	Continuous $\omega, 2\theta$	$C_T - t(C_{B_1} + C_{B_2})$
Not made	0.095	S.R.E. [‡] at B_1 and B_2	Continuous $\omega, 2\theta$	$(C_{T\beta} - C_{T\alpha}) - t[(C_{B_1} + C_{B_2})_{\beta} - (C_{B_1} + C_{B_2})_{\alpha}]$
1.02	0.20	S.R.E. [‡] at B_1 and B_2	$\begin{array}{c} \text{Continuous} \\ 2\theta \end{array}$	$(C_{T\beta} - C_{T\alpha}) - t[(C_{B_1} + C_{B_2})_{\beta} - (C_{B_1} + C_{B_2})_{\alpha}]$
Not made†	0.29	S.R.E.‡ at <i>B</i>	Continuous ω	$(C_{T\beta}-C_{T\alpha})-(C_{B\beta}-C_{B\alpha})$
Not made	0.2	S.R.E. [‡] at B_1 and B_2	Continuous w	$C_T - t(C_{B_1} + C_{B_2})$
Not made	0.75	S.R.E. [‡] at B_1 and B_2	Continuous ω	$C_T - t(C_{B_1} + C_{B_2})$
Not made	0.67	S.R.E. [‡] at B_1 and B_2	Continuous ω	$C_T - t(C_{B_1} + C_{B_2})$
Not made	0.33	S.R.E. [‡] at B_1 and B_2	$\begin{array}{c} \text{Continuous}\\ \omega \end{array}$	$C_T - t(C_{B_1} + C_{B_2})$
Not made	Not reported	S.R.E.‡ at <i>B</i>	Continuous ω	$(C_{T\beta}-C_{T\alpha})-(C_{B\beta}-C_{B\alpha})$
1.01	0.76	5-point plateaux at α - and β -edges, B_1 and B_2	Stepped w	$\sum_{B_1}^{B_2} C_j - (B_2 - B_1)/10 \left[\sum_{B_1}^{B_1 + 5} C_j + \sum_{B_2 - 5}^{B_2} C_j \right]$
Not made	0.66	Function of <i>v</i> on each layer	Continuous ω	$C_T - C_B$
1.00	0.12	S.R.E. [‡] at B_1 and B_2	Stepped ω	$C_T - t(C_{B_1} + C_{B_2})$

obtained by the sampling technique, C_i is the count at the *i*th point and *t* is the ratio of total measurement time to that used in the background measurement. $C_{i\alpha,\beta}$ is the count obtained using the α,β member of a balanced filter pair. In experiment 14, the count measured at each *i*th point is the difference between those obtained using each member of a pair of balanced filters.

The integrated intensities measured in the seventeen experiments were reduced to unscaled structure factor (F) values by use of the appropriate Lorentz and polarization factors; absorption corrections were made for the four experiments indicated in column nine.

Preliminary treatment of the data

The basic data, h,k,l and unscaled F, were either supplied on punched tabulating cards or were on data sheets from which cards were then punched, each carrying a number identifying the experiment. A small number of values, reported erroneously as zero, or with a negative sign, or with an obvious error in decimal point position as judged by reference to the other sets, were eliminated. The remaining data consisted of 5641 individual structure factors lying within the limit $(\sin \theta)/\lambda = 0.5 \text{ Å}^{-1}$ specified in the questionnaire.

The participants were requested to provide an estimate of the standard deviation of F based on counting statistics alone; few did so however. Although counting statistics rarely reflect the true error in a measured structure factor, this information would have been valuable in establishing the minimum possible error in the reported values of F. Weights used in the scaling program and in calculation of the weighted R factors were based upon standard deviations estimated on the assumption $\sigma(F) = kF$.

Data tests

For testing the data, three procedures were used. The first procedure determined measures of internal consistency for each experiment from the data for equivalent hk0 reflections and for general reflections measured more than once. The experimenters had not been asked to carry out the latter measurements, and the sampling of such measurements was thus rather nonuniform. Each group of equivalent reflection data was then replaced by a single average value, the 17 sets of data were mutually scaled, and the second procedure was applied. This was an overall comparison of the data sets in pairs and of each set relative to the set of mean values. This provided a second measure of the agreement in the project data (see Mathieson, 1969). The final test procedure was an application of analysis-ofvariance methods to the deviations of individual sets from the set of mean values of F in an attempt to allocate the main errors in the data among certain specified variables (see Abrahams et al., 1967).

Internal consistency

For each experiment, the agreement between values of the structure factors, F_{he} , for equivalent reflections may be used to assess the degree of internal consistency. Two measures for experiment *i* are*

$$R_i = \sum_{h} \sum_{e} |F_{he} - \bar{F}_h| / \sum_{h} \sum_{e} |F_{he}|$$
(1)

and

$$wR_{i} = \left[\sum_{h}\sum_{e}\frac{1}{\sigma^{2}}(F_{he}-\bar{F}_{h})^{2}/\sum_{h}\sum_{e}\frac{1}{\sigma_{he}^{2}}F_{he}^{2}\right]^{1/2} \stackrel{\dagger}{\cdot} (2)$$

The values of R_i and wR_i are presented in Table 3.

Table 3. Internal consistency of individual experiments as measured by agreement among equivalent and replicate reflections

The data for experiments 4 and 14 were submitted with averaging among equivalent reflections already completed.

	No. of	No. of		
Experiment	HKL's	observations	R_i	wR_i
6	36	112	0.0552	0.0677
11 <i>b</i>	42	131	0.0283	0.0592
11a	36	120	0.0401	0.0483
10	31	94	0.0243	0.0454
8	36	70	0.0139	0.0279
13	38	131	0.0186	0.0262
5	40	314	0.0099	0.0236
12	39	134	0.0098	0.0209
9	38	105	0.0111	0.0209
15	37	126	0.0094	0.0193
7	40	138	0.0120	0.0179
1	17	42	0.0083	0.0177
3	39	135	0.0095	0.0126
16	39	128	0.0074	0.0119
2	36	72	0.0075	0.0104

Scaling the data

When the data for each group of repeated or equivalent reflections were replaced by a single average value and when a number of obviously anomalous observations were eliminated, there resulted 4265 structure factor values representing 332 non-equivalent hkl reflections. These were placed on a common scale by the method of Hamilton, Rollett & Sparks (1965) and the data, so scaled, are listed in Table 4. This least-squares procedure assigns as much as possible of the discrepancy between F values to differences in scale factor, and it is assumed here that this is appropriate because all structure factors were derived on a relative scale. Table 4

* \bar{F}_h is the mean over all experiments.

† It will be noted that with the assumption $\sigma(F) = kF$ (2) simplifies considerably. Thus

$$wR_i = \left[\sum_{h \ e} \sum_{e} \frac{(F_{he} - \bar{F}_h)^2}{F_{he}^2} / r\right]^{1/2} \simeq \left\langle \left(\frac{\Delta F}{F}\right)^2 \right\rangle^{1/2} \quad (2a)$$

where r is the number of reflections and $\langle \rangle$ denotes 'average value'.

Table 4. Structure factor values, on a common scale, from the different data sets

н	к	L	لې	1	2	3	4	5	6	7	8	9	10	11b	12	13	14	15	16	11a
1234567123456701234567123456012345123407654321012345677	0000011111111122222222333333334444455556000000000000000000	000000000000000000000000000000000000000	$\begin{array}{c} 760\\ 1034\\ 2298\\ 3700\\ 2592\\ 252\\ 1192\\ 252\\ 252\\ 1192\\ 252\\ 252\\ 252\\ 252\\ 252\\ 252\\ 252\\ 2$	0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c} 717\\ 717\\ 827\\ 927\\ 1813\\ 287\\ 287\\ 287\\ 287\\ 295\\ 232\\ 252\\ 232\\ 252\\ 232\\ 232\\ 232\\ 23$	/700 2310 2777 2345 2258 2258 2258 2258 11038 2558 11048 2558 11048 2558 11048 2558 11048 2558 11048 2558 11048 2558 11048 2558 10052 2558 10052 2558 10052 2558 10052 2558 10052 2558 10052 2558 10052 2558 10052 2558 10052 2558 10052 2558 10052 2558 10052 2558 10052 2558 10052 2558 10052 2558 1000 200 200 200 200 200 200 200 200 20	721 960 1891 230 299 256 256 1004 757 524 256 492 498 751 526 492 498 751 526 492 492 492 492 492 492 492 492 283 492 283 494 223 284 459 526 472 283 452 284 472 283 422 284 472 284 374 467 775 575 575 575 575 575 575 575 575 5	735 986 2757 22357 2237 2237 2237 2237 2237 223		742 946 946 2056 2189 225 237 11020 982 258 8053 2329 976 703 443 483 8053 2329 976 703 443 483 8053 2329 773 443 449 1452 576 449 1452 576 449 1452 576 449 1452 576 449 1452 576 449 1452 576 449 1452 576 449 1452 576 449 1452 576 449 1452 576 1457 576 449 1452 576 1457 576 449 1452 576 1457 576 449 1452 576 1457 576 1457 576 1457 576 1457 576 155 515 515 515 515 515 515 515 515 51	734 9240 2020 226 2222 2326 2322 2326 2322 2326 2322 2326 2322 2326 2322 2326 2322 2326 2322 2326 241 2326 2433 1447 1503 2847 1503 2847 1503 2741 1298 2022 241 2022 2022	$\begin{array}{c} 716\\ 92083\\ 33010\\ 2823\\ 3010\\ 2823\\ 3010\\ 2825\\ 2825\\ 2825\\ 2825\\ 2825\\ 2835$	$\begin{array}{c} 8064\\ 8064\\ 1244\\ 2778\\ 212\\ 201\\ 12041\\ 8666\\ 4042\\ 2778\\ 19666\\ 447\\ 1557\\ 19666\\ 447\\ 1557\\ 19666\\ 447\\ 1557\\ 19666\\ 447\\ 1000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 0$		$\begin{array}{c} 752\\ 918\\ 90\\ 918\\ 90\\ 21\\ 91\\ 22\\ 91\\ 22\\ 91\\ 22\\ 91\\ 22\\ 22\\ 22\\ 22\\ 22\\ 22\\ 22\\ 22\\ 22\\ 2$	$\begin{smallmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	$\begin{smallmatrix} 0 \\ 0 \\ 2006 \\ 2006 \\ 2007 \\ 20170$	783 988 2540 231 1198 231 1198 231 1198 231 1198 231 231 231 1198 231 231 231 231 231 231 231 231 231 231	$\begin{array}{c} 754\\ 945\\ 2243\\ 264\\ 264\\ 264\\ 264\\ 264\\ 264\\ 264\\ 264$	$\begin{array}{c} 8a \\ 8a \\ 7019 \\ 4 \\ 337 \\ 2269 \\ 837 \\ 2269 \\ 837 \\ 2269 \\ 837 \\ 2269 \\ 99 \\ 837 \\ 2269 \\ 99 \\ 837 \\ 2269 \\ 99 \\ 1095 \\ 99 \\ 1095 \\ 99 \\ 1095 \\ 99 \\ 1095 \\ 1095 \\ 99 \\ 1005 \\ 1$
			$\begin{array}{c} 531\\ 6404\\ 11853\\ 965\\ 965\\ 14945\\ 877\\ 1965\\ 19660\\ 777\\ 973\\ 705\\ 779\\ 1953\\ 770\\ 1953\\ 770\\ 1953\\ 770\\ 1953\\ 770\\ 1953\\ 770\\ 1953\\ 770\\ 1953\\ 1959\\ 1959\\ 1959\\ 1922\\ 1012\\ 1022\\ 3777\\ 1953\\ 1022\\ 100\\ 1022\\ 100\\ 100\\ 100\\ 100\\ 1$	$\begin{smallmatrix} 0\\ 5965\\ 9\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	$\begin{array}{c} 515\\ 616\\ 1155\\ 440\\ 857\\ 436\\ 857\\ 436\\ 857\\ 436\\ 857\\ 856\\ 857\\ 856\\ 857\\ 856\\ 857\\ 856\\ 857\\ 856\\ 857\\ 856\\ 857\\ 857\\ 857\\ 857\\ 857\\ 857\\ 857\\ 857$	$\begin{smallmatrix}&&&&\\&&&&\\&&&&\\&&&&\\&&&&\\&&&&\\&&&&\\&&$	$\begin{array}{c} 519\\ 6205\\ 1596\\ 7390\\ 1217\\ 1421\\ 1421\\ 7390\\ 7565\\ 7390\\ 7565\\ 1679\\ 4894\\ 824\\ 2519\\ 1146\\ 824\\ 2519\\ 1156\\ 8924\\ 610\\ 398\\ 611\\ 1306\\ 812\\ 610\\ 398\\ 611\\ 1306\\ 812\\ 610\\ 398\\ 4523\\ 396\\ 1306\\ 812\\ 1$	$\begin{array}{c} 493688889710101010101010101010101010$		$\begin{smallmatrix} 505 \\ 6250 \\ 1733 \\ 1877 \\ 1826 \\ 286 \\ 287 \\ 1926 \\ 287 \\ 1926 \\ 287 \\ 287 \\ 1926 \\ 287 \\ 2$	$\begin{array}{c} 478\\ 590\\ 11\\ 1658\\ 855\\ 1301\\ 220\\ 771\\ 855\\ 1301\\ 1719\\ 7719\\ 7719\\ 7719\\ 7719\\ 7719\\ 7719\\ 7712\\ 7710\\ 7727\\ 7711\\ 1728\\ 7701\\ 1561\\ 1561\\ 1561\\ 1561\\ 1561\\ 1561\\ 1562\\ 7701\\ 1562\\ 7701\\ 1025\\ 8622\\ 77523\\ 4377\\ 7523\\ 4376\\ 7527\\ 7523\\ 4376\\ 1025\\ 8622\\ 7523\\ 4376\\ 1025\\ 8622\\ 7523\\ 4376\\ 1025\\ 8622\\ 7523\\ 4376\\ 1025\\ 8622\\ 7523\\ 4376\\ 1025\\ 8622\\ 7523\\ 7523\\ 4376\\ 1025\\ 8622\\ 7523$ 7523 7523 7523 7523 7532 7553 7553 7553 7555	$\begin{array}{c} 54\\ 627\\ 001\\ 1857\\ 1513\\ 386\\ 2003\\ 561\\ 1957\\ 386\\ 8012\\ 1857\\ 2003\\ 561\\ 1918\\ 2003\\ 561\\ 1918\\ 2003\\ 2097\\ 561\\ 1918\\ 2003\\ 2097\\ 101\\ 2003\\ 101\\ 1036\\$		$\begin{array}{c} 494\\ 634\\ 1\\ 9\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	$\begin{array}{c} 4683542\\ 5483542\\ 15855\\ 13342\\ 21856827\\ 21856826\\ 3622\\ 15856\\ 84562\\ 5\\ 012\\ 12856\\ 84562\\ 221856\\ 84562\\ 84$	$\begin{array}{c} 835\\ 10217\\ 31226\\ 1637\\ 2911\\ 3418\\ 9919\\ 3477\\ 9909\\ 1281\\ 1281\\ 1093\\ 3477\\ 9919\\ 1093\\ 32281\\ 128$	$\begin{array}{c} 542\\ 676\\ 1796\\ 745\\ 786\\ 767\\ 738\\ 967\\ 738\\ 967\\ 735\\ 967\\ 735\\ 967\\ 735\\ 967\\ 735\\ 967\\ 735\\ 967\\ 735\\ 967\\ 735\\ 956\\ 767\\ 956\\ 766\\ 956\\ 767\\ 956\\ 767\\ 956\\ 767\\ 956\\ 767\\ 956\\ 767\\ 956\\ 767\\ 956\\ 767\\ 956\\ 956\\ 767\\ 956\\ 956\\ 767\\ 956\\ 956\\ 956\\ 956\\ 956\\ 956\\ 956\\ 956$	528 614 939 939 1504 367 558 558 558 558 558 558 558 558 558 55	$\begin{array}{c} 491\\ 589\\ 11751\\ 1316\\ 863\\ 1316\\ 22014\\ 863\\ 1352\\ 7352\\ 2014\\ 859\\ 567\\ 675\\ 878\\ 899\\ 596\\ 621\\ 857\\ 7352\\ 878\\ 878\\ 899\\ 596\\ 1157\\ 778\\ 878\\ 878\\ 1027$	$\begin{smallmatrix}&&&&\\&&&&\\&&&&&\\&&&&&\\&&&&&\\&&&&&\\&&&&&\\&&&&$

SINGLE CRYSTAL INTENSITY MEASUREMENT PROJECT REPORT. I

									Tabl	e 4 (cont.	.)								
н	К	L	μ	1	2	3	4	5	6	7	8	9	10	116	12	13	14	15	16	lla
5654321012345432101232101654321012346543210123465432101284654321012	233333333344444444445555000000001111111111	<u> </u>	$\begin{array}{c} 117\\ 717\\ 592\\ 217\\ 217\\ 217\\ 217\\ 217\\ 217\\ 217\\ 21$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 718\\ 718\\ 6041\\ 421\\ 3564\\ 421\\ 3564\\ 421\\ 3564\\ 421\\ 3564\\ 421\\ 3564\\ 421\\ 3564\\ 421\\ 3564\\ 422\\ 3564\\ 422\\ 5562\\ 442\\ 5562\\ 442\\ 5562\\ 249\\ 211\\ 450\\ 766\\ 5921\\ 148\\ 429\\ 211\\ 2857\\ 148\\ 5938\\ 5956\\ 5921\\ 148\\ 5978\\ 165\\ 198\\ 5676\\ 198\\ 576\\ 6067\\ 6067\\ 6067\\ 6067\\ 6067\\ 6067\\ 6067\\ 6067\\ 6067\\ 6067\\ 198\\ 5068\\ 766\\ 198\\ 5068\\ 766\\ 198\\ 5068\\ 766\\ 198\\ 5068\\ 766\\ 198\\ 5068\\ 766\\ 198\\ 5068\\ 766\\ 198\\ 5068\\ 766\\ 198\\ 5068\\ 766\\ 198\\ 108\\ 108\\ 108\\ 108\\ 108\\ 108\\ 108\\ 10$	711 0000 7467 1283 105 4877 1283 291 000 4413 3291 0000 4413 3291 0000 4413 3291 0000 4413 3291 00000 621 460000 00000 000000 8559 9416 1529 9416 1529 1529 000000000000000000000000000000000000	$\begin{array}{c} 712\\ 281\\ 579\\ 7\\ 4\\ 097\\ 4\\ 8\\ 308\\ 1\\ 18\\ 1\\ 18\\ 1\\ 245\\ 8\\ 338\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 2\\ 5\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\$	$\begin{array}{c} 766\\ 768\\ 859\\ 4218\\ 859\\ 748\\ 1260\\ 9358\\ 449\\ 1260\\ 9358\\ 449\\ 758\\ 3708\\ 449\\ 758\\ 3708\\ 449\\ 758\\ 3708\\ 449\\ 765\\ 762\\ 762\\ 768\\ 768\\ 768\\ 768\\ 768\\ 768\\ 768\\ 768$		$\begin{array}{c} 706\\ 783\\ 846\\ 4621\\ 1238\\ 846\\ 942\\ 228\\ 1238\\ 3946\\ 942\\ 2285\\ 7473\\ 33946\\ 942\\ 2395\\ 441\\ 2396\\ 442\\ 204\\ 4432\\ 204\\ 4432\\ 9515\\ 857\\ 977\\ 2396\\ 402\\ 376\\ 402\\ 204\\ 162\\ 931\\ 162\\ 931\\ 162\\ 931\\ 162\\ 931\\ 162\\ 931\\ 162\\ 931\\ 162\\ 931\\ 162\\ 931\\ 162\\ 931\\ 162\\ 931\\ 162\\ 1038\\ 162\\ 1038\\ 162\\ 1038\\ 162\\ 1038\\ 162\\ 1038\\ 102\\ 102\\ 102\\ 102\\ 102\\ 102\\ 102\\ 102$			。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。	72000005588000000060740057330000000000000000000000000000000	$\begin{array}{c} 65068559{}\\ 65068559{}\\ 65068559{}\\ 65068559{}\\ 65068559{}\\ 65069{}\\ 126058550{}\\ 642505550{}\\ 126058550{}\\ 6425550{}\\ 126059{}\\ $	$\begin{array}{c} 8182210587643\\ 855204337678787878878688786887868878688786887$	$\begin{array}{c} 221955\\ 221955\\ 419195899\\ 44295633\\ 11948295633\\ 44295633\\ 44295633\\ 48956636\\ 8994956\\ 6309865\\ 630985163\\ 1163969865\\ 63098675\\ 116396785\\ 11639$	$\begin{array}{c} 743\\ 579\\ 532\\ 537\\ 7867\\ 7867\\ 457\\ 0\\ 3926\\ 457\\ 457\\ 0\\ 3316\\ 457\\ 457\\ 457\\ 457\\ 457\\ 445\\ 812\\ 637\\ 445\\ 812\\ 637\\ 445\\ 812\\ 637\\ 445\\ 812\\ 637\\ 445\\ 812\\ 637\\ 418\\ 812\\ 610\\ 0\\ 267\\ 124\\ 842\\ 828\\ 0\\ 62\\ 267\\ 124\\ 842\\ 828\\ 0\\ 610\\ 0\\ 267\\ 124\\ 842\\ 828\\ 0\\ 610\\ 0\\ 267\\ 116\\ 842\\ 828\\ 0\\ 124\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10$	$\begin{array}{c} 7197\\ 7197\\ 4501\\ 1\\ 4939\\ 7457\\ 1275\\ 33919\\ 5424\\ 4339\\ 5424\\ 4339\\ 5424\\ 4339\\ 5424\\ 4339\\ 5424\\ 4339\\ 5424\\ 4339\\ 5424\\ 4319\\ 5768\\ 5768\\ 5768\\ 6855\\ 2248\\ 8157\\ 8157\\ 2248\\ 8157\\ 8$	$\begin{array}{c} 7 \\ 1 \\ 5 \\ 0 \\ 2 \\ 2 \\ 3 \\ 3 \\ 4 \\ 2 \\ 3 \\ 4 \\ 2 \\ 3 \\ 4 \\ 2 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3$
3454321012332101543210123543210123432101232101232101321020	223333332222222222222222222222222222222	٩٩٩٩ ٩٩٩ ٩٩٩ ٩٩٩ ٩٩٩ ٩٩٩ ٩٩٩ ٩٩٩ ٩٩٩	768555 68555 6857 85777 8577 8577 8577 85777 8577 85777 8577 8577 8577	$\begin{array}{c} 7555\\ 7713\\ 7586\\ 3000\\ 473\\ 835\\ 4^{\circ}0\\ 6656\\ 3322\\ 0\\ 14\\ 3322\\ 0\\ 14\\ 3332\\ 0\\ 14\\ 3332\\ 0\\ 14\\ 3332\\ 0\\ 14\\ 3332\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	$\begin{array}{c} 7566\\ 77099\\ 5321\\ 2245\\ 3264\\ 2245\\ 3267\\ 42749\\ 5562\\ 42749\\ 5562\\ 42749\\ 5562\\ 4274\\ 748\\ 5562\\ 4274\\ 1494\\ 4272\\ 1494\\ 4252\\ 7734\\ 4211\\ 738\\ 7734\\ 4211\\ 738\\ 7734\\ 4211\\ 738\\ 7734\\ 4211\\ 738\\ 7734\\ 4211\\ 738\\ 7734\\ 4211\\ 738\\ 7734\\ 4211\\ 738\\ 7734\\ 4211\\ 738\\ 7734$ 7734\\ 7734\\ 7734 7734\\ 7734 7734 7734 7734 7734 7735 7734 7735	$\begin{array}{c} 732\\ 7668\\ 0\\ 0\\ 2916\\ 4\\ 7798\\ 4\\ 3\\ 0\\ 0\\ 0\\ 0\\ 3\\ 6\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	$\begin{array}{c} 738\\ 687\\ 527\\ 5291\\ 215\\ 6294\\ 752\\ 215\\ 6294\\ 769\\ 204\\ 769\\ 760\\ 760\\ 760\\ 760\\ 760\\ 760\\ 760\\ 760$	76930 75282 2044 8146 204534 13704 462953 1455192 145155 155992 4051 13704 13704 13704 1411 213883 74111 213883 74141 1213883 7428 7428 7428 7428 7428 7428 7428 7428	0	$\begin{array}{c} 752\\ 7704\\ 511\\ 3210\\ 2346\\ 607\\ 3221\\ 1367\\ 6677\\ 3222\\ 13667\\ 6677\\ 3222\\ 13667\\ 6677\\ 1256\\ 1350\\ 1466\\ 784\\ 3076\\ 784\\ 5066\\ 783\\ 33766\\ 667\\ 784\\ 667\\ 784\\ 667\\ 784\\ 667\\ 784\\ 666\\ 783\\ 33766\\ 666\\ 147\\ 784\\ 666\\ 666\\ 147\\ 874\\ 666\\ 666\\ 147\\ 874\\ 666\\ 666\\ 147\\ 874\\ 666\\ 666\\ 147\\ 874\\ 666\\ 666\\ 147\\ 874\\ 666\\ 666\\ 147\\ 874\\ 666\\ 666\\ 147\\ 874\\ 666\\ 147\\ 874\\ 666\\ 147\\ 874\\ 184\\ 184\\ 184\\ 184\\ 184\\ 184\\ 184\\ 18$	$\begin{array}{c} 76784\\ 76794\\ 75166\\ 32165\\ 32165\\ 32655\\ 32655\\ 326555\\ 326555555555555555555$	726 665 5002 2032 2788 6222 2788 4792 2554 2788 312287 0 0 0 0 0 0 0 0 0 0 0 0 0			$\begin{array}{c} 757 \\ 663 \\ 5133$	652123197102891072500053795640021227474415557321450557910725007537956071122572247744155572116665676122224777441525722168440141671	7776432588807059146264240507556088439871025884710278588070591772988070591772988070591773884710741839413981414644439136882006690	777984 62113630098555 562550000000000000000000000000000000	$\begin{array}{c} 777529\\ 775529667733264986829924\\ 4820991139333991139533391139513398\\ 1135539657449786972449783971124958879177255854472335749155711249588791772558574493335744558574449335744558574449335745585744558574449335745585745585744558574455857445585744558574455857445585744558574455857445585744558574455857445585744558574455857445585744558574455857445585744558577455857445585777725585774558577772558577772558577772558577455585777725585777725585777725587777255877772558577772558777725587777255857777725587777255857777725587777725587777725587777255877777255877772558777725587777725587777255877777255877777255877772587777258777725787777257877772578777725787777257877772578777725877777257877772578777725787777257877772578777725787777257877772578777725787777257877772578777725787777257877772578777757777257877777257877777257877777577777777$	0094433851551457478800009925 8558443851524774244458200009925 16445835310229554478800009925 16445825212445827203 363855269244 363855269244 363857203 3690000000000000000000000000000000000

also contains, in the column headed μ , the mean values (\bar{F}_h) averaged over all experiments.

In the case of set 3, no h reflections were reported; the total listed for this set in Table 4 is therefore only 179. For 11*a*, 251 are listed but only 164 for 11*b*; again mainly h reflections were omitted. For experiments 6 and 10, only hk0 data were submitted.

Mutual consistency

Two measures of mutual consistency of the data of sets i and j are the quantities

$$R_{ij} = \sum_{h} |F_{hi} - F_{hj}| / \frac{1}{2} \sum_{h} (F_{hi} + F_{hj}) \equiv \sum_{h} |\Delta F_{hij}| / \sum_{h} |F_{hij}|$$
(3)

and

10

$$wR_{ij} = \left[\sum_{h} \frac{1}{\sigma^2} \left(\Delta F_{hij} \right)^2 / \sum_{h} \frac{1}{\sigma^2} \left(F_{hij} \right)^2 \right]^{1/2} \overset{*}{.}$$
(4)

Corresponding measures of agreement between the *i*th experiment and the set of mean values are

$$R_{i\mu} = \sum_{h} |F_{ih} - \bar{F}_{h}| / \sum_{h} \bar{F} \equiv \sum_{h} |\Delta F_{hi\mu}| / \sum_{h} |\bar{F}_{h}| \qquad (5)$$

and

$$wR_{i\mu} = \left[\sum_{h} \frac{1}{\sigma^2} \left(\Delta F_{hi\mu} \right)^2 / \sum_{h} \frac{1}{\sigma^2} \bar{F}_{h}^2 \right]^{1/2} \stackrel{\dagger}{.}$$
(6)

The arrays of R_{ij} and $R_{i\mu}$, wR_{ij} and $wR_{i\mu}$ are given in Table 5. Moving averages[‡] of R_{ij} values are shown in Fig.1, as also are histograms of R_{ij} for each value of *i*. Inferences to be drawn from these Figures will be treated in the Discussion section.

Analysis-of-variance

For each structure factor value F_{hi} in Table 4, a quantity γ_{hi} is defined. It is

$$\gamma_{hi} = (F_{hi} - \bar{F}_h) / \sigma_{hi} \tag{7}$$

and is a weighted difference between the value of the structure factor observed in experiment *i* and the mean value over all experiments. These quantities, γ_{hi} , constitute the primary observations in the analysis-of-variance.

Because the types of instrument involved in the project included four-circle ('equatorial') devices whose angular dependence was likely to be mainly on θ and 'equi-inclination' devices operating layer by layer, the choice of factors had to reflect these conditions. Six factors were therefore considered: the experiment number (n) with effect E(n), the intensity range (I)

*
$$\simeq \left\langle \left(\frac{\Delta F_{hij}}{F_{hij}}\right)^2 \right\rangle^{1/2}$$
 if $\sigma(F) = kF$. (4a)

$$\dagger \simeq \left\langle \left(\frac{\Delta F_{hi\mu}}{F_{hi}}\right)^2 \right\rangle^{1/2} \text{ if } \sigma(F) = kF.$$
(6a)

 \ddagger These are histograms smoothed by convolution with a rectangular distribution function of width 0.025.

with effect I(I), the angular range in which the reflection was observed (d^*) with effect $A(d^*)$ and each of the Miller indices h,k,l with effects H(h), K(k), L(l). The level of each factor and the number of observations for each level are given in Fig.2.

The analysis-of-variance model used was similar to that in the A.C.A. single crystal intensity report (Abrahams *et al.*, 1967). It is assumed that

$$\gamma_{hi} \equiv \gamma E = \bar{\gamma} + M + EI + EA + EH + EK + EL + \varepsilon$$
 (8)

- where $\bar{\gamma}$ is the overall mean, which will be approximately zero because of definition (7),
 - M is the sum of the main effects E, I, A, H, K, L and also approximates to zero as a result of the scaling procedure,
 - EI is an experiment-intensity interaction effect,[†]
 - EA is an experiment-angle interaction effect,
 - EH, EK, EL are experiment-Miller-index interaction effects, and ε is a random error, assumed to be normally distributed with zero mean.

The standard analysis-of-variance technique determines the parameters in (8), both under general and specified linear hypotheses, using a least-squares method. Small changes in scale which may arise from different weighting schemes or by omission of individual data – including whole experiments – will have practically no influence on the interaction effects.[‡]

It is important for the reader to understand that the analysis-of-variance model used determines the various effects independent of one another; for example, the significance of an EH effect is not at all dependent on whether or not there is an EL effect. If the model is incomplete, however, EH and EL might both depend on some source of systematic error which was not considered and thus show an apparent correlation.

The analysis-of-variance was carried out for the group comprising all experiments, with the exception of 6 and 10 which are two-dimensional experiments. The *F*-ratios [see Abrahams *et al.* (1967) for terminology] calculated for the five hypotheses that the interaction effects are zero are compared (Table 6) with the significant value of *F* at the 0.005 level. Where this value, $F_{n2,n1}$ exceeds the tabulated value of $F_{n2,n1,\alpha}$ the

[†]The intensity was defined here as $[F^2(1 + \cos^2 2\theta)]/\sin 2\theta$. The Lorentz factor, $1/\sin 2\theta$, is exactly appropriate only for the four-circle instruments. Even for the other experiments, *I* defined in this way is likely to be a more meaningful variable than F^2 . For the equi-inclination experiments, *I* should be multiplied by a further factor of $\sin \theta/[(\sin^2 \theta - \sin^2 \mu)^{1/2}]$. Furthermore for monochromatized radiation, the polarization factor differs from $\frac{1}{2}(1 + \cos^2 2\theta)$. Neglect of these factors would result in a few reflections being grouped in different intensity classes.

[‡]This was checked by arbitrarily altering the scale of experiment 1 by 50%. The interaction effects and F ratios remain the same to 1 part in 10,000. The expected large differences in the effect E and the corresponding F ratios were however evident.

	S. C. ABRAHA	MS, W. (C. HAMI	LTON	A٢	1D	A. MCL.	MATHIES	SON
	$R_{i\mu} \times 10^{3}$ 478 478 141 092 093 062 058 058	023 046 084 091 071	031 040 049			$R_{t\mu} \times 10^3$	460 154 096 096	089 070 087 087	o 138 080 059 064
	γ W0 W0 W0 W0 W0 W0 W0 W0 W0 W0 W0 W0 W0	Cocewe	Cu/M Cu/M Cu/M			у	N O O O O O O O O O O O O O O O O O O O		ũ ^M CCCC
	t geometry ω traverse	$\omega, 2\theta$ traverse	xed counter eam ω r only			r geometry	$\left\{\begin{array}{c} \omega \\ traverse \end{array}\right\}$	$\omega, 2\theta$ traverse	J xed counter eam ω t only
	Diffractomete Equi- inclination	· 4-circle	Fixed crystal/fi Normal b Zero-layer			Diffractometer	Equi- inclination	. 4-circle	Fixed crystal/fi Normal b Zero-layer
	10 1162 1162 034 034 034 034 034 034 034 034	057 057 080 145 137 094	048 051 033 -			10	213 213 177 114	072 072 058 087 130 130	084 055 078 044 -
	6 520 1140 042 042 042 042 042 042	0/2 051 059 120 074	042 052 - 033			9	496 124 079 079	046 046 070 061 110	072 058 076 - 044
	9 109 010 010 010 000 000 000 000 000 00	061 057 099 073 073	056 - 052 051	actors		6	406 237 237 167	153 153 086 178 171 238 238	167 197 076 078
)3	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	002 038 090 097 097	- 056 042 048	wR _{tj} f	03.	ŝ	428 152 144 104	102 103 067 080 206	$193 \\ - \\ 197 \\ 058 \\ 055 \\ $
ay × 1(8 1130 1130 092 092 057	 060 061 068 	- 0 <u>67</u> 073 074 094	iental -	ray ×1	×	443 248 248 180 180	153 139 171 139 176	19 <u>3</u> 167 072 084
Riµ arr	4 480 136 093 093 093 093 087	$0.100 \\ 0.011 \\ 0.01$. 097 099 128 138	xperin	' <i>Riµ</i> arı	4	460 259 185 161	- 156 - 156	206 206 125 125
ij and	2 482 135 153 098 070 070	048 048 048 060 061	090 091 120 145	nter-e.	Jand и	7	447 214 190 134 116	092 088 092 156	$\frac{139}{106}$
R	7 7 448 120 096 085 034 -	- 044 - 044 - 044 - 044 - 044 - 044 - 046	043 057 059 080	5(b). I	wRi	7	435 218 191 144 108	092 - 092 -	155 080 178 061 087
	2 435 000 000 000 000 000 000 000 0	060 - 041 - 040 085 - 080 060 - 085	037 061 051 057	Table		Ś	437 205 190 097 097	09 <u>3</u> 09 <u>3</u> 144	143 067 158 070 058
	$\begin{array}{c}1\\128\\128\\1128\\001\\071\\041\\-\end{array}$	041 046 063 063 063	062 062 083 083	t			421 196 171 133 123	115 093 093 093	171 103 086 116 134
	16 123 123 123 133 133 133 071 104 075	038 038 070 087 051	040 060 048 071			16	435 208 197 110 100	-0 <u>-</u> 0 <u>-</u> 0 <u>-0</u> 085 085 117 117 117 206	153 102 153 046 072
	15 151 093 151 093 151 093 151 098 151 151 151 151 151 151 151 151 151 15	069 069 126 135 110	066 066 042 034			15	$\frac{399}{127}$	090 105 132 132 132	178 107 103 047 047
	14 140 140 140 140 170 140 170 140 170 140 170 140 140 140 140 140 140 140 140 140 14	070 065 099 092 092	059 076 088 088			14	221 221 134 177	110 110 110 110 110 110 110 110	180 104 167 079 114
	11 <i>a</i> 416 126 143 - 118 118 104 104	100 096 093 113	099 109 116 125			11a	416 176 167 - 134	150 133 141 144 134 185	204 144 202 177
	11 <i>b</i> 359 164 164 143 140 093 133	135 135 153 171 171	102 100 114 116			11b	373 189 - 167 221	191 191 191 259	248 152 237 237 213
	12 497 164 126 138 151 151	121 121 135 136 136	130 139 140 162			12	500 - 1176 210 210	208 205 218 214 214	244 231 214 124 176
	13 - 497 359 416 430 443 443	435 448 480 460 460	434 · 406 520 508			13	- 500 373 416 433 399	435 437 447 447 460	443 406 496 499
	$\sum_{i=1}^{113} \sum_{j=1}^{113} \sum_{i=1}^{113} \sum_{j=1}^{116} \sum_{i=1}^{116} \sum_{i=1}^{116} \sum_{j=1}^{116} \sum_{i=1}^{116} \sum_{i=1}^{116} \sum_{j=1}^{116} \sum_{i=1}^{116} \sum_{j=1}^{116} \sum_{i=1}^{116} $	- 50 1- 60 4- 80	90 10			Z_{i}	13 111 111 15	10-0-04	9 0 0 3 8 10 0 3 3 8

Table 5(a). Inter-experimental Rig factors

11

hypothesis may be rejected.* The probability of rejecting a true hypothesis is less than 100α per cent.

12

* n1 and n2 are the number of degrees of freedom; n1 is the number of observations minus the number of parameters determined (including the 332 means for the 332 independent reflections. n_2 is the dimension of the linear hypothesis, *i.e.* the number of independent linear relationships among the parameters of (8) specified by the hypothesis. Estimates of the interaction effects and their standard deviations, for each of the five variables, were also derived and are given in Fig.2; for example, for the *EI* effect, the quantity plotted is $\bar{\gamma} + E + I + EI$. It should be noted that only the difference between shapes of curves in any column is significant. That a particular curve is horizontal does not mean that there is no corresponding systematic error in the experiment but only that this

Fig. 1. Moving average curves of interexperimental R_{ij} and wR_{ij} values together with histograms of R_{ij} . (a) The R_{ij} curve for all sets. (b) As in (a) but with exclusion of sets 11a, 11b, 12 and 13. (c) The histograms of R_{ij} for individual sets i with that for set 13 excluded. The arows indicate the position of $R_{i\mu}$ for each i. (d) The wR_{ij} curve for the same group of sets as in (b).

experiment agrees well with the average insofar as its dependence on the variable of that column is con- are presented in the following Discussion section.

Fig. 2. Interaction effects derived by analysis-of-variance on all sets except 6 and 10. There were four levels for each factor as indicated at the top of the Figure. The number N of observations at each level is indicated at the bottom. The experiment numbers are on the right and left-hand margins. Immediately below N are error bars 2σ in length where σ is the estimated standard deviation of the corresponding effect as derived from the analysis-of-variance least-squares program. Since it is only differences between the effects that can be determined by this procedure, the effect for the first level of each factor was arbitrarily set to zero, and there is therefore no associated estimated standard deviation. The error bars can thus be used only to indicate significant trends in one experiment with respect to the average or between any two experiments. The reader is cautioned to bear this in mind in interpretation of the Figure. For example, the strong downward trend with L in experiment 13 is compensated for by an upward trend in all the other experiments. That the trend is up or down for one experiment is unimportant and reveals nothing. That the trend is different for two experiments is revealing.

 Table 6. Tests of the hypotheses that each of the five interaction effects is zero

All experiments but 6, 10: Significant value $F_{42,3626,0.005} = 1.65$

- H_1 : Experiment-*I* interaction effects are zero $F_{42,3626} = 5.36$
- H₂: Experiment-A interaction effects are zero $F_{42,3626} = 2.58$
- H₃: Experiment-H interaction effects are zero $F_{42,3626} = 3.70$
- H₄: Experiment-K interaction effects are zero $F_{42,3626} = 4.50$
- H_5 : Experiment-L interaction effects are zero $F_{42,3626} = 11.18$
- Thus all hypotheses can be rejected with a high degree of confidence.

Discussion

As indicated in the Introduction, there are two main aspects of part I of the project - (i) assessment of the probable accuracy by reference to the spread of measured F values and (ii) the attempted allocation of some of the error to specific error-sources.

We treat (i) on the basis of the values of the various R indices already defined in the text. With the weighting procedure chosen, the wR indices give an estimate of the root-mean-square *percentage* deviation [see equations 2(a), 4(a), and 6(a)]. The R indices give a measure of the overall mean deviation. If the weighting scheme chosen is appropriate,* the wR is a better quantity to use than R in any arguments as to trends in the data.

First consider the estimates of internal consistency given for each set by wR_i and R_i , values of which are given in Table 3 in order of decreasing wR_i and R_i . They range from ~1% to ~7% for the former and <1% to $5\frac{1}{2}$ % for the latter. There is a possible indication of subdivision into two groups – those below 3% in wR_i (2% in R_i) and those above. The latter group includes sets 6 and 10 which provide only zero-layer data.

It may thus be inferred from Table 3 that the *precision* in the estimate of F by an individual experimenter making measurements on *one* crystal is typically in the range of a few per cent when judged by either R or wR.[†]

The question of inter-set consistency is conveniently combined with that of mutual consistency by reference to the values of $wR_{i\mu}$ and wR_i , $R_{i\mu}$ and R_i which are compared in Table 7. Certain simple observations may be made from these comparisons. With the exception of the zero-layer sets 6 and 10, all $wR_{i\mu}(R_{i\mu})$ are greater than the corresponding $wR_i(R_i)$. These increases indicate the presence of errors in the data which were not evident in the tests of self-consistency. These errors must be associated with the additional variables of experimental technique and crystal specimen which occur in the inter-set comparisons. Two sets, 12 and 13, show an extreme change relative to their wR_i values – which themselves lie in an acceptable range. The overall pattern given by R_i and $R_{i\mu}$ is similar, although there are slight differences in sequence arising from different weighting given to data in different intensity ranges.

Having established certain broad features concerning the consistency of the sets, it is now appropriate to look more closely at the results for individual sets in relation to the data from the other participants. This can be done in two ways: by comparison in pairs with other individual sets, and with the set of mean values derived from all sets by a simple process of averaging. The resultant simple and weighted indices are recorded in Table 5(a) and (b) respectively. The grouping together of experiments with diffractometers of the same basic design is an obvious simplification for such tabulation. It allows comparison within each subgroup and between different techniques; also those experiments within a sub-group using a particular radiation are readily distinguished. All equi-inclination instruments used Mo radiation while, in the case of the 4-circle instruments, four used Cu and three Mo radiation. Experiment 3 used the stationary-crystal stationarycounter procedure. Experiments 9 and 10 used the normal beam procedure while sets 6 and 10 were restricted to zero-layer data.

Consider the values of $R_{i\mu}$ and $wR_{i\mu}$ in Table 5(a) and (b). For the equi-inclination devices, they may be broken into two groups, between 0.048 and 0.062 in R (~0.09 in wR) and the others >0.09 in R(>0.12 in wR). For the 4-circle devices, the Mo sets group around 0.05 in R(~0.085 in wR) while those with Cu radiation group around 0.08 in R but show wide variation, 0.087-0.163 in wR. Set 3 differs from the other Cu sets, as noted above. There is an indication that the lower R-valued group in both basic designs of diffractometer involves Mo radiation and lies in the range 0.046-0.062 in R and 0.070-0.096 in wR.

For convenient consideration of the rather large array of R_{ij} and wR_{ij} values, the alternative presentation of Fig.1 (see footnote[‡] page 10) is useful. Fig.1(a) presents the curve derived from the values of R_{ij} for the complete group of data sets. It is obviously not the single-peaked function to be expected from a Gaussian distribution of errors. Rather it suggests a main group plus certain outliers. Identification of specific outliers, where an outlier can only be identified as different from the remaining group, and not necessarily as better or worse, is facilitated by reference to the individual histograms in Fig. l(c). Supporting evidence is provided later in the analysis-of-variance results. One extreme outlier, set 13, produces the broad peak in Fig.1(a) near R=0.48. The main peak at R=0.06 is accompanied by a partly isolated peak at R = 0.14, mainly due

14

^{*} Most statistical procedures in common use depend for their validity on proper weights having been used. The weighting scheme used in the present data analysis is one that is frequently used and appears generally applicable, except for very weak reflections where counting statistics dominate.

[†] The precision range indicated here may be compared with that in the A.C.A. project (Abrahams *et al.* 1967; Mackenzie & Maslen, 1968). This comparison is permissible since the present test refers to measurements on *one* particular crystal by each participant and the A.C.A. project also dealt with measurements on *one* crystal.

to set 12 and a shoulder, mainly but not wholly, due to sets 11*a* and 11*b*. The corresponding R_{ij} curve after exclusion of 11*a*, 11*b*, 12 and 13 is shown in Fig.1(*b*), and this single-peaked distribution may be interpreted as due to a broad spread of error-sources throughout the sets of data involved.

Certain inferences may be made from this R_{ij} curve concerning how data from two crystallographers are probably related. Thus, from Fig.1(b), we may infer that if two crystallographers each independently measure, on different diffractometer assemblies, different crystals of the same low-absorption compound, then the data sets, as assessed by R_{ij} , are most likely to differ by 6%, that they are not very likely to agree better than 3% nor usually worse than 10%, but may be as bad as 50% in extreme cases of systematic error. An individual set (excluding 11a, 11b, 12 and 13) differs from the set of mean F_h values, Table 4, by approximately 5-6%, *i.e.* the mean of $R_{i\mu}$ in Table 5 for these sets. We may interpret this evidence to mean that the absolute accuracy of any set is probably, at best, 5-6% (Mathieson, 1969). The change of curve shape in going from R_{ij} [Fig.1(b)] to wR_{ij} [Fig.1(d)] is, of course, related to the weights assigned in the two procedures $-R_{ij}$ being a measure of mean deviation while wR_{ij} is a measure of percentage deviation. If the double peak is meaningful, then it indicates a sub-group at $wR \sim 0.10$ and another sub-group at ~ 0.16 , contributions to the latter mainly relating to sets 4, 8 and 9; 4 and 8 being absorption-corrected Cu radiation sets and 9 involving Cu radiation for data for l=0,1,2.

We now consider the possible origins of the sources of error by analysis-of-variance of the data sets. As noted earlier, the experiments were each analyzed in terms of intensity I, d^*, h, k, l . The latter four variables are essentially angular functions, chosen to accord with the operational characteristics of 4-circle and equi-inclination diffractometers. The results for the sets are again grouped in Fig.2 according to the basic design of instrument and radiation used.

Inspection of Fig.2 indicates a larger range among the slopes of the interaction effects for the angular variables d^* , h, k, and l for the equi-inclination than for the 4-circle diffractometers. For the 4-circle devices, there is no significant difference in the spread of slopes between the experiments using Cu or Mo radiation, except for the first point of the d^* curve of experiment 1 in which unfiltered radiation was used and for experiment 4 whose k dependence has no immediately obvious correlation or explanation. In the case of the equi-inclination diffractometers, the dependence on h,k,l is particularly obvious for experiments 12 and 13.

The intensity interaction curves for the Mo subgroup (1,5,7) of the 4-circle devices, using an $\omega,2\theta$ procedure and therefore homogeneous in this respect, are approximately parallel. The three experiments of the Cu sub-group (2,4,8) using an $\omega,2\theta$ traverse, show parallel trends but downward relative to 1,5,7. The, remaining Cu radiation member, 3, which involved the stationary-crystal stationary-counter technique does not lie parallel to 2,4,8. In the equi-inclination, group, the extreme trend with intensity as in 11b, 13 and 15 is, by contrast, upwards.

In the case of 13, an equi-inclination device with the crystal c axis mounted parallel to the ω axis, the extreme monotonic dependence on l [Fig.2(a)] suggests an instrumental malfunction that systematically increases with increasing equi-inclination angle. A similar but opposite trend is associated with experiment 12, in which the crystal c axis is again parallel to ω . It is of interest to note the interaction curves for sets 12 and 13. The trends are, in general, consistently opposite. The two experiments carried out on the same diffractometer (11a and 11b) do not appear to show any significant common systematic trend with any index. More-

		WR				R	
Set No.	wRi	w R _{iµ}	$ wR_{i\mu}^2 - wR_{i}^2 ^{1/2}$	Set No.	R,	Rıµ	$ R_{i\mu}^2 - R_i^2 ^{1/2}$
6	0.068	0.059	0.034	6	0.055	0.040	0.038
11 <i>b</i>	0.029	0.154	0.142	11 <i>a</i>	0.044	0.093	0.084
11 <i>a</i>	0.048	0.122	0.112	11 <i>b</i>	0.040	0.092	0.083
10	0.045	0.064	0.045	10	0.024	0.049	0.043
8	0.028	0.131	0.128	13	0.019	0.478	0.478
13	0.026	0.460	0.459	8	0.014	0.071	0.070
5	0.024	0.070	0.066	7	0.012	0.049	0.048
12	0.021	0.204	0.203	9	0.011	0.039	0.037
9	0.021	0.138	0.136	5	0.010	0.046	0.045
15	0.019	0.082	0.078	12	0.010	0.141	0.141
7	0.018	0.080	0.078	3	0.010	0.031	0.029
1	0.018	0.092	0.090	15	0.009	0.028	0.057
3	0.013	0.080	0.079	1	0.008	0.053	0.052
16	0.012	0.089	0.088	2	0.008	0.084	0.084
2	0.011	0.087	0.086	16	0.007	0.048	0.048
4	-	0.163	_	4	_	0.091	-
14	-	0.096	-	14	-	0.062	-

Table 7. Comparison of R for the different data sets

over the sets appear to show marked differences of character as assessed on the basis of the interaction curves.

In summary, experiments showing deviations significant at the approximately 2σ level are indicated in Table 8.

Table 8. Experimental deviations from average judged significant at the 2 σ level

0,0	
Variable	Experiment
Ι	2, 4, 8, 11, 13, 15
Α	1, 13
Н	12, 13, 17
K	4, 12, 13, 14, 17
L	11, 12, 13

Because of the large trends for experiments 12 and 13 which could be consistent with the presence of appreciable systematic error in these data sets, the analysis-of-variance was repeated with these sets excluded. The F ratios of the thirteen-experiment subgroup were as follows:

$$\begin{array}{ccccccc} H_1 & H_2 & H_3 & H_4 & H_5 \\ F_{36,3038} = 5.43 & 1.25 & 2.25 & 2.42 & 1.30 \end{array}$$

Significant values of F for these numbers of degrees of freedom are

$$F_{0.005} = 1.72$$
, $F_{0.05} = 1.42$

The systematic errors with l and also with d^* for the sets involved appear to be virtually removed. Those associated with the other variables remain. In the case of experiment 14, the small but significant trend with k may be related to the fact that the crystal b axis was parallel to the ω axis.

As has been noted in comparing the curves for R_{ij} and wR_{ij} [Fig.1(b) and (d)], it is possible to select arbitrarily a group of sets in close common accord. Thus, based on wR_i (Table 7), we might choose group (1, 2, 3, 7, 15, 16) but for $wR_{i\mu}$, group (1, 2, 3, 5, 7, 15, 16). For $R_{i\mu}$, the group might be (1, 3, 5, 7, 9, 16), and from the interaction curves (see Fig.2 and Table 8), 3, 5, 7, 9, 16. Taking into account these four criteria, a possible concordant group is group (1, 2, 3, 5, 7, 16). We can refer to this as a *modal* group and apply the analysis-of-variance to these experiments.[†] The values of the resultant F ratios were

$$H_1 \quad H_2 \quad H_3 \quad H_4 \quad H_5$$

$$F_{15,1300} = 3.145 \quad 1.459 \quad 0.643 \quad 0.428 \quad 0.997$$

The significant value of $F_{15,1300,0.005} = 2.19$; hence H_1 may be rejected with confidence. However, for this group, any correlation with the angular variables,

 d^* , h, k, l, has disappeared. This result illustrates the difficulty of selecting a modal group based on subjective estimates of mutually good agreement. Part II of this report shows that important differences are still present among the concordant modal group as defined here. Thus the different and individual characteristics of each crystal in respect of its 'internal morphology' as differentiated for convenience into mosaicity, extinction and absorption might be identified as other appropriate variables. Although four sets were corrected for absorption (4, 8, 14 and 16), there is no indication from the data that these sets tend to form a more concordant sub-group differentiable from the other sets.

The stability estimates given in the 2nd and 3rd columns of Table 1 tend to be rather large in some cases, indicating that improved stabilization or reference to a reliable monitor would be advantageous.

Concerning the material used, D(+)-tartaric acid, earlier tests had indicated its selection from a number of possibilities considered. It proved however to be less than ideal. Several participants found that the crystals, as received, had a rather large mosaic spread, resulting in extreme cases in crystals consisting of multiple individuals of nearly parallel orientation but rotated about [010]. For a large mosaic spread, it is possible that aperture dimensions become critical with $\omega, 2\theta$ traverses (Burbank, 1964) and for intensity measurements to suffer systematic error with θ . There is no direct evidence from the data of this having occurred in the project. Interaction curves against d^* for the Cu/ $\omega, 2\theta$ group 2, 4, 8, which are likely to be most affected by such an error, show no marked deviations.

Summary

Magnitudes of error

No simple assessment of the accuracy of determination of structure factors can be given in this project. An average over all experiments could be misleading since this would include outliers, *i.e.* experiments which, although capable of yielding structural data when treated individually (see part II of the Report) are shown by inter-experimental comparison to differ significantly from the mean. For the group of sets remaining after elimination of outliers, it is possible to present several ways of assessing their accord.

Thus, (i) we may utilize the curve of R_{ij} for the sample, excluding sets 11*a*, 11*b*, 12 and 13 [Fig.1(*b*)]. This provides a practical estimate of the agreement, measured as R_{ij} , likely to occur between two crystallographers measuring different crystals. The results of this project imply, for materials like D(+)-tartaric acid, a probable difference of 6% and outer limits of 3% and 10%.‡

[†] The members of the modal group were mutually rescaled and the changes relative to the previous scale factors were small, being 1.000, 1.000, 0.990, 1.000, 0.995, and 0.999 for sets 1, 2, 3, 5, 7 and 16. The R_{ij} values were only marginally reduced (about 0.003 at most). Because the group of sets is chosen for concordance, the $R_{i\mu}$ values for the six sets were generally smaller: 0.033, 0.037, 0.038, 0.020 and 0.026 as compared with the original 0.053, 0.084, 0.031, 0.046, 0.049 and 0.048 respectively.

[‡] This assumes that the two crystallographers know that they have not made systematic errors of the magnitude which must be present in some of the experiments of this project. There is of course no way for an individual crystallographer to be sure of this in any one-shot experiment.

(ii) We may extract a group of sets which appear to be in best agreement according to specified tests. In this project, one such group is 1, 2, 3, 5, 7, 16 for which the mean measure of agreement for R_{ij} is 5.2%. This measure is, of course, highly selective and, in this sense, somewhat artificial.

(iii) We may consider the fit of an individual set with the set of mean values. With this criterion, the mean error in the group (1, 2, 3, 5, 7, 16) ranges from 0.020 to 0.053 in *R* and 0.053 to 0.071 in *wR*. With this criterion, the mean error is 5.8% and ranges from 3 to 9%.

Error-sources

Types of diffractometer and techniques

The present analysis indicates that the 4-circle group of diffractometers appear to yield results more mutually concordant than the equi-inclination group. For the latter, quite serious malfunctions can occur and may not be obvious to the experimenter (see Table 7 and also part II of the Report) without independent experimental evidence. It is particularly advisable to apply a careful check procedure in the use of such diffractometers.

The representation in the project of the various specific techniques is unfortunately uneven with only one example of measurement with stationary-crystal stationary-counter, set 3. Both sub-groups of the 4-circle devices using $\omega, 2\theta$ scans, involving Cu and Mo radiation respectively, independently show a reasonable degree of internal concordancy. The ω scan method, used in all equi-inclination sets, appears to be associated with a lower degree of internal concordancy.

λ dependence

The trends with intensity of the Cu radiation groups 2, 4, 8 (of which 4 and 8 applied absorption corrections) relative to the Mo radiation groups 1, 5, 7, suggest the possibility of a wave-length dependence of systematic error.

MONOCHROMATIZATION

Apart from set 1 which used no filter (and this may account for the atypical first point in the d^* interaction curve) the procedures for monochromatization – β -filter, balanced filters, crystal monochromators – were all used, and there is no clear evidence that any one is better than others.

COUNT RATES

Despite the fact that there must be counting losses in some experiments (Table 2), there is no direct evidence from the project data that high count rates are associated with the significant intensity trends noted for sets 2, 4, 8, (Cu) or 11b, 13, 15 (Mo).

Specimen dependence

The analysis appears to have shown that the variables I, d^*, h, k, l do not represent the complete range of error sources, nor necessarily the most important in a diffractometer experiment. The specific characteristics of each individual crystal may well contribute an important part of the total error. Independent experimental assessment of such specimen characteristics as mosaicity, extinction, absorption, *etc.* would be required to permit statistical allocation of the error magnitude to the specific property.

The representative nature of the project

It is advisable to remind readers that the number of participants in the project is, for statistical purposes, small. Although they are probably typical of the users of diffractometers, they cannot be regarded necessarily as completely representative. Secondly, the project involved measurement by each participant attempting to use his normal, routine procedure on an individual crystal, so that the project explored a wide range of variables likely to be encountered in practice. Thirdly the project data were measured in 1965–66. The assessments offered in this Report should therefore be considered within this framework.

We would like to thank the following members and consultants to the 1963–66 Commission on Crystallographic Apparatus of the I.U.Cr.: Professors D. C. Phillips, Y. Saito and M. M. Umanskij. Our special thanks go to the participants for their splendid and generous support. Only with this international support was it possible to assemble the data sets necessary for the analysis. We hope that the participants consider that the results have repaid their efforts. The Commission itself feels that the Project has been most rewarding. One of us (A. McL. M.), wishes to record his appreciation of the valuable assistance and advice he has received during helpful discussion with his colleagues, Drs J. K. MacKenzie, V. W. Maslen and D. A. Wright.

References

- Abrahams, S. C., Alexander, L. E., FURNAS, T. C., HAMILTON, W. C., LADELL, J., OKAYA, Y., YOUNG, R. A. & ZALKIN, A. (1967). Acta Cryst. 22, 1.
- Abrahams, S. C., Alexander, L. E., Furnas, T. C., Hamilton, W. C., Ladell, J., Okaya, Y., Young, R. A. & Zalkin, A. (1969). Acta Cryst. A 25, 585.
- American Crystallographic Association (1962). Apparatus and Standards Committee Annual Report. Summer meeting, Villanova, Pennsylvania.
- ARNDT, U. W. & WILLIS, B.T. M. (1966). Single Crystal Diffractometry. Cambridge Univ. Press.
- BOND, W. L. (1960). Acta Cryst. 13, 814.
- BUERGER, M. J. (1960). Crystal Structure Analysis. New York: John Wiley.
- BURBANK, R. D. (1964). Acta Cryst. 17, 434.
- COOPER, A. S. (1966). Private communication.

COOPER, M. J. & NATHANS, R. (1968). Acta Cryst. A 24, 481.

- FURNAS, T. C. (1957). Single Crystal Orienter Instruction Manual. Milwaukee: General Electric Company.
- HAMILTON, W. C. & ABRAHAMS, S. C. (1969). Acta Cryst. A 26, 18.
- HAMILTON, W. C., ROLLETT, J. S. & SPARKS, R. A. (1965). Acta Cryst. 18, 129.
- International Union of Crystallography (1959). Acta Cryst. 12, 1054.
- International Union of Crystallography (1964a). Acta Cryst. 17, 1183.
- International Union of Crystallography (1964b). Acta Cryst. 17, 1616.
- MACKENZIE, J. K. & MASLEN, V. W. (1968). Acta Cryst. A24, 628. MATHIESON, A. MCL. (1969). Acta Cryst. A25, 264.

Acta Cryst. (1970). A26, 18

International Union of Crystallography Commission on Crystallographic Apparatus Single-Crystal Intensity Measurement Project Report II. Least-Squares Refinements of Structural Parameters

BY WALTER C. HAMILTON

Brookhaven National Laboratory, Upton, New York 11973, U.S.A.

AND S. C. ABRAHAMS

Bell Telephone Laboratories, Inc., Murray Hill, New Jersey 07974, U.S.A.

(Received 21 July 1969)

The structure factors measured by the participants in the single-crystal intensity project of the I.U.Cr. Commission on Crystallographic Apparatus on D(+)-tartaric acid have been used in least-squares refinement of the structural parameters. The structure factors submitted by each participant were subjected to two refinements – once with heavy atoms only and once with all atoms including hydrogen. The parameters resulting from these refinements differ by magnitudes which suggest that the estimated standard deviations of the positional parameters obtained in the least-squares refinements are not infrequently a factor of about two too small and about 1/2 too small on the average. The agreement for the thermal vibration parameters may be even worse – by an additional factor of about two. These results are consistent with the indications of serious systematic errors in some of the experiments revealed in part I of this report. A modal group of six experiments with good interexperimental agreement leads to least-squares refined position parameters that are also in fair agreement; the maximum value of the ratio of the externally estimated standard deviation to the internal estimate from the least-squares refinements is about 2.5. The finding that results of possible high precision but low accuracy are not uncommon in single crystal-structure investigations is confirmed.

Introduction

In part I of this report (Abrahams, Hamilton & Mathieson, 1969), later referred to as part I, the interexperimental agreement factors and classical analysis-ofvariance techniques have revealed the presence of systematic errors in many diffractometer experiments. Such errors cause differences between relative structure factors, measured by different experimenters on different specimens of the same substance, to be much larger than the internal consistency of the individual experiments would suggest. The analysis-of-variance techniques used in part I are appropriate for revealing the nature of the systematic differences among experiments without recourse to a theoretical model. Nevertheless, it is of interest to examine the results of applying the usual least-squares refinement procedure to the structure factors to determine how the possible systematic errors are manifested in the refined positional and thermal parameters.*

Refinement procedure

Each set of structure factors was subjected to leastsquares refinement, using the usual model for the oxygen and carbon atoms that

$$F(hkl) = K\sum_{j} f_{j} \exp \left[2\pi i(hx + ky + lz)\right] \exp \left[-\sum_{ik} h_{i}h_{k}\beta_{ik}\right]$$

* Since limited data sets consisting of no more than 332 independent reflections were used, none of the results below should be taken as definitive determinations of the average parameters in the p(+)-tartaric acid structure, especially since the reflections used extended only to sin $\theta/\lambda = 0.5$ Å⁻¹.